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Pressure drops in a fully developed laminar incompressible reciprocating pipe f low 
have been investigated analytically and experimentally. An exact analytical solution 
for the instantaneous and cycle-averaged friction coefficients of a fully developed 
laminar reciprocating f low has been obtained. It was found that, although the 
dimensionless axial velocity profiles of a fully developed flow depend only on the 
kinetic Reynolds number, the friction coefficients depend not only on the kinetic 
Reynolds number but also the dimensionless oscillation amplitude of fluid. Experi- 
ments have been carried out to measure the pressure drops of a laminar reciprocat- 
ing f low at downstream of a long pipe at various frequencies and fluid displace- 
ments. Comparisons are made for the time-resolved and the cycle-averaged friction 
coefficients between the analytical solution and experimental data. It is shown that 
the analytical solution is in good agreement with measurements. 

Keywords: reciprocating flow; friction coefficient; kinetic Reynolds number; dimen- 
sionless oscillation amplitude of fluid 

Introduction 

The problem of oscillatory flow in a pipe under the influence of 
periodic pressure fluctuations has been studied by many re- 
searchers both analytically and experimentally. Measurement by 
Richardson and Tyler (1929) first indicated that the maximum 
axial velocity in a fast oscillatory flow occurs near the wall, 
which is the "annular effect." Sexl (1930) and Womersley 
(1955) later verified the "annular effect" by performing analyses 
for both sinusoidal and nonsinusoidal motions of a fully devel- 
oped incompressible laminar oscillatory flow in a pipe. Uchida 
(1950) obtained velocity profiles of a fully developed incom- 
pressible laminar pulsating flow (with nonzero mean velocity) in 
a straight pipe for an externally imposed nonsinusoidal pressure 
gradient. Most recently, Akhaven et al. (1991) experimentally 
verified Uchida's analytical solution by measuring velocity pro- 
files of a reciprocating flow of water in a pipe. 

Relatively few papers have reported on the study of frictional 
losses in a reciprocating pipe flow. Roach and Bell (1988) 
obtained some data of pressure drops and heat transfer in a tube 
and a packed tube under rapidly reversing flow conditions. They 
reported higher friction factors but could not find frequency 
dependence in either pressure drop or heat transfer data. Wu et al. 
(1990) performed experiments on the friction factor in a gap heat 
exchanger and presented their data versus the Reynolds number 
at given values of the oscillation frequency• Taylor and Aghili 
(1984) gathered some data of pressure drops in an oscillating 
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flow of water in a pipe of a finite length at relatively low 
frequencies. Their data indicate an increase of the friction coeffi- 
cient over an unidirectional steady flow. However, they did not 
have sufficient data to investigate the effects of frequency on the 
friction coefficient. 

The purpose of the present work is twofold. First, to obtain an 
analytical expression for predicting the friction coefficient of a 
fully developed reciprocating pipe flow (with zero mean velocity) 
based on Uchida's (1950) solution for a pulsating flow (with 
nonzero mean velocity). Second, to compare this expression with 
experimental data obtained by measuring temporal variations of 
axial cross-sectional mean velocity and pressure drops down- 
stream of the pipe using a hot-wire anemometer and a differential 
pressure transducer, respectively. It is expected that the results 
reported herein will be useful for predicting friction losses in the 
design of heat exchangers in a Stirling engine or a pulse-tube 
cryocooler. 

Analytical solution 

Consider a hydrodynamically fully developed reciprocating flow 
in a pipe with diameter D. The governing conservation equations 
of mass and momentum for an incompressible fully developed 
flow are 
au 
- - = 0  
ax 
au 

(1) 

1 i)p [ 02// 1 0 u  
+ v [ ~  + --r --0r ) (2) at Ox P 

where x and r are the axial and radial coordinates, u is the axial 
velocity, p is the pressure, and p and v are the density and the 
kinematic viscosity of fluid, respectively. 
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We now assume that the reciprocating flow is driven by a 
sinusoidally varying pressure gradient given by 

1 Op 
- -  = k cos tot (3) 
p bx 

where k and to are the amplitude and the circular frequency of 
oscillation of the externally imposed pressure gradient. An exact 
solution for the axial velocity profile of a fully developed recipro- 
cating flow is obtained from a modification of Uchida's (1950) 
analytical solution to give: 

kD 2 
u = 4 ~ v  [B cos tot + (1 - A )  sin tot] (4) 

where A and B are given, respectively, by 

berabei2a R + beio~ber2a R 

A = ber2 a + bei2oL (5) 

bero~ber2a R - beiabei2cx R 

B = ber2c~ + bei2ct (6) 

with R = ( r / D )  being the dimensionless radial coordinate, and a 
being the Womersley number defined by 

= - = ( 7 )  
2 

where Redo = ( t oD 2 /v )  is the kinetic Reynolds number. Integrat- 
ing Equation 4 over the cross section of the pipe yields the 
following exact expression for the mean velocity: 

U m = Uma x sin + (8) 

with Urea x and + given by 

k_D2~r 
= (9a) Umax 32v 

T~ 
~b = ~- ( t o t -  A)  (9b) 

and 

where 

f f = ~ 3 ~ ( a - 2 C x )  2 + 4 C  2 (lOa) 

A = t a n - l ( ° t - 2 C 1 1  (lOb) 
2C2 ] 

with C 1 and C 2 in the above equations being given by 

berctbei'ct - beiaber'c~ 
C 1 = berZct + bei2 a ( l l a )  

berc~ber'ct + beictbei'c~ 
C 2 = berZct + beiZct ( l l b )  

where ber'ct = [d(ber'ct)/dct], and bei'ct = [d(bei ct)/doL]. It fol- 
lows from Equations 4 and 9a that the dimensionless axial 
velocity for a fully developed reciprocating flow is given by 

U 
U = - -  = f ( R ,  T, Reo, ) (12) 

Umax 

where "r = tot is the dimensionless time related to the phase angle 
qb by - r = 2 ( i - 1 ) w + q b  with i being the number of cycle. 
Equation 12 shows that the dimensionless axial velocity of a fully 
developed flow, at a given position and time, is a function of the 
kinetic Reynolds number only. 

We now define the instantaneous friction coefficient c f= and 
the cycle-averaged friction coefficient 8f,~ of a reciprocating 
flow as 

• w( '0  ~ 1 r = ~ , / ~  
1 2 1 2 (13) 
~DUmax ~PUmax 

(14) 

Notation 

A function defined in Equation 5 
A o dimensionless oscillation amplitude of fluid defined 

in Equation 17c and 22 
B function defined in Equation 6 
C x constant defined in Equation l l a  
C 2 constant defined in Equation 1 lb 
Q friction coefficient defined in Equation 13 
cf, ex p measured friction coefficient defined in Equation 24 
cy,~xp,j measured friction coefficient at jth time interval 
?y,~xp measured cycle-averaged friction coefficient defined 

in Equation 25 
Q,~ analytical friction coefficient defined in Equation 15 
cf,~ cycle-averaged friction coefficient defined in Equa- 

tion 16 
D diameter of the pipe 
Ap pressure drops 
F~, expression defined in Equations 17a and 18a 
k amplitude of the imposed pressure gradient in Equa- 

tion 3 
L distance of the two taps of the pressure transducer 
N i number of sampling intervals in one cycle 
p pressure of the fluid 
r ,R dimensional and dimensionless radial coordinates 
Re,. kinetic Reynolds number 

t,'r dimensional and dimensionless time 
u,U dimensional and dimensionless axial velocity 
u,, cross-sectional mean velocity 
Uma x maximum cross-sectional mean velocity 
x axial distance 

Greek 

A 

p 

~ w  

Womersley number defined in Equation 7. 
phase difference defined in Equations 17b and 18b 
phase difference defined in Equation 10b 
phase angle 
density of fluid 
shearing stress at the wall 
kinematic viscosity of fluid 
oscillatory frequency 

Subscripts 

fully developed flow 
exp measured data 
f friction 
i ith cycle 
j jth sampling interval 
m cross-sectional mean value 
max maximum value 
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where % is the wall shearing stress. Differentiating Equation 4 
and substituting in Equations 13 and 14 yield the following exact 
expressions for the friction coefficient of a fully developed 
reciprocating flow 

32F~ 

cf= Ao 

and 

64/7,, 

C f ~ -  ,rrA ° 

with 

= - -  sin(+ + +1) (15) 

(16) 

Fo, = (17a) 
16~/(c~ - 2C,) 2 + 4C~ 

* , = t a n -  2-~-2 ~ C , ]  

2Umax 
Z o - (17c) 

coD 

Where qb 1 is the phase angle difference (in degrees) between the 
cross-sectional mean velocity u m given by Equation 8 and the 
wall shearing stress. Note that the instantaneous pressure coeffi- 
cient can be either positive or negative during a cycle. The 
positive sign of the friction coefficient means the fluid flow 
moves in the positive direction, while the negative sign implies 
that it moves in the negative direction. 

It is noted that F~o and 61 given by Equations 17a and 17b are 
complicated functions of Reo,, which are presented in Figure 1. 
For the convenience of computations, simplified expressions for 
these quantities in terms of Re,o are needed. For this purpose, the 
values of F~ and ~b 1 computed from Equations 17a and 17b are 
fitted by the following algebraic expressions. 

0.161 
F = (ReO.Sns _ 2.039) +- 3.3% (18a) 

~b 1 = 0.64711 - 1.015 exp( -0 .019 Re,o)] -I- 1.9% (lSb) 

Substituting Equation 18a into Equation 16 yields 

3.272 

cf,~ = ,ao~Ke J -  t n  o 548 - 2.039) (19) 

which shows that the cycle-averaged friction coefficient is in- 
versely proportional to both Re~ and A o. 
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Experimental details 

Apparatus and inst rumentat ion 

As schematically shown in Figure 2, a closed-loop test rig, 
consisting of a pump, a sinusoidal motion generator, an angle 
position encoder, a test section (made of a long copper tube, 94.5 
cm in length and 1.35 cm in diameter), four velocity straighten- 
ers, and a data acquisition system, was constructed for the present 
study. To have a uniform inlet velocity over the cross section and 
measure this velocity by a hot-wire probe, four velocity straight- 
eners were constructed and installed at each end of the test 
section. The sinusoidal motion of the working fluid (air) in the 
test section was established by a double acting pump connected 
to a crank shaft and yoke sinusoidal mechanism. The pump was 
driven by a 1 kW DC motor with an adjustable speed. The crank 
shaft and yoke sinusoidal mechanism were designed so that the 
fluid displacement varied according to 

Xmax (1 -- COS (~)) (20)  
x =  2 

where the maximum fluid displacement Xrnax can be adjusted by 
changing the stroke of the pump. Differentiating Equation 20 
with respect to time and comparing the resulting expression with 
Equation 8 gives 

Xmax (0 
Umax 2 (21) 

Substituting Equation 21 into Equation 17c yields 

Xmax 
Z ° =  D (22) 

which indicates that A o is the dimensionless oscillation ampli- 
tude of the fluid displacement. 

Pressure drops along the pipe were measured by a differential 
pressure transducer (Validyne, Model DP15) and a carrier de- 
modulator (Validyne, Model CD15). To measure the pressure 
drops in the fully developed flow region, the pressure transducer 
taps were installed at locations far from the entrance of the pipe. 
As shown in Figure 2, the two taps of the pressure transducer 
separated by a distance of L (L = 68) were connected in the 
middle of the test section. To measure the cross-sectional mean 
velocity, a miniature hot-film probe (TSI, Model 1260A-10) was 
installed between the two velocity straighteners at the left side of 
the test section (see Figure 2). The hot-film probe was connected 
to a hot-wire anemometer (TSI, IFA 100) and calibrated up to a 
maximum velocity of 15 m/ s  using a calibrator (Model 1125, 
TSI). The calibrator accuracy is + 2% for velocities between 3 to 
300 m/s ,  +5% for velocities in the range of 0.15 to 2 m/s ,  and 
+ 10% for velocities below 0.15 m/s.  Analog-to-digital conver- 
sions were carried out by a Metrabyte DAS-20 A / D  board, 
giving 100,000 samples per second with 12-bit precision. A 
4-channel simultaneous sample and hold front end for the A / D  
board (Metrabyte, SSH-4) was employed, which was capable of 
securing the 4-channel signals to be sampled simultaneously. The 
phase angle qb was monitored by an optical shaft encoder (Lucas 
Ledex, Model LD23) with two degree resolution, which could 
also provide a top dead center (TDC) signal for data acquisition 
purposes. Thus, both the velocities and pressure drop signals 
were sampled with two-degree resolution over 180 intervals in 
one period starting at TDC. 

Data reduct ion 

As mentioned earlier, pressure drops were measured in the fully 
developed flow region. Therefore, the reduction of experimental 
data is based on a hydrodynamically fully developed flow whose 
momentum equation is given by Equation 2. If Equation 2 is first 
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multiplied by 2 ~ rd r and integrated over the cross section of the 
tube and then integrated with respect to x from x = 0 to x = L, 
it becomes 

Ap du m 4,r w 
- - ~  = P--~-t + ~ (23) 

where we have assumed ( 3 p / 3 x )  is a constant. Substituting 
Equation 23 into Equation 13 and solving for cf,~x p yields 

D d u  m '~ 
1 Ap-~-- - pD--~-  t ) (24) Cf'exP 2pU2max 

where Ap and u m can be measured by the differential pressure 
transducer and the hot-wire anemometer, respectively. In the 
present study, the data were analyzed using the ensemble-aver- 
aged pressure drop and cross-sectional mean velocitv. The num- 
ber of the samples to be ensembly averaged was 106 cycles. The 
measured cycle-averaged friction coefficient ~/,¢xp is defined as 

1 N1 

- = - -  ~'~ I cf,exp,jJ (25) Cf'exp g l  j = 1 

where Nj is the total number sampling intervals in a cycle, and 
c f ,  exp, j is the data evaluated based on Equation 24 at the jth 
interval. 

Uncer ta in t y  ana lys is  

An uncertainty analysis based on the method described by Moffat 
(1988) was performed. Uncertainty in the kinetic Reynolds num- 

ber Re= was dominated by the measurement of oscillation fre- 
quencies and was estimated at + 2.3%. Uncertainty in the dimen- 
sionless oscillation amplitude of the fluid A o was computed to be 
less than +0.5%, which was primarily influenced by errors in 
measuring the stroke and the diameter of the air pump. The main 
source of errors in the reported results of the friction coefficient 
is statistical uncertainty in the ensemble-averaged quantities of 
velocities and pressure drops due to the finite number of mea- 
surements. The statistical uncertainty in the ensemble-averaged 
velocity is estimated to be ___ 4.5%, assuming uncorrelated, nor- 
mally distributed measurements with a 95% confidence level. 
Similarly, the statistical uncertainty in the ensemble-averaged 
pressure drops varies from + 6 to + 9%. The largest uncertainties 
in the measurements of the cycle-averaged friction coefficient 
~'f,~,~p were computed to be about _ 10.5%. 

Results and discussion 

In this section, we present analytical and experimental results of 
the instantaneous and cycle-averaged friction coefficients for a 
laminar reciprocating flow of air in a long circular pipe. Experi- 
ments on pressure drops downstream of a long pipe were carried 
out for A o <_ 26.42 and with the value of Re,o ranging from 23.1 
to 395 where the velocity profiles appeared to be laminar. 

Figure 3 is a comparison of the assumed sinusoidal cross-sec- 
tional mean velocity u m given by Equation 8 and the measured 
ensemble-averaged velocity at the inlet of the tube at Reo, = 208.2 
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Comparison of the ensemble-averaged traces of the 
cross-sectional mean veloci ty at the inlet and the assumed 
sinusoidal inlet mean veloci ty variat ion 

for A o = 16.5 and 22.51. It is shown that for the smaller value of 
A o ( A  o = 16.5) the measured velocity is in good agreement with 
the assumed sinusoidal cross-sectional mean velocity of the 
analytical solution. However, for higher values of A o(A o = 22.51, 
for example), the measured velocities deviated slightly from the 
sinusoidal curve at certain instances of time. Uncertainty in the 
ensemble-averaged velocity is +2.5%. It is worth mentioning 
that, because the hot-wire probe could not detect the flow direc- 
tion, the velocity shown in the figure is the absolute value. 

Typical variations of the measured instantaneous pressure 
drops during a complete cycle at A o = 26.42 for Re~, = 144.1 
and Re= = 324.3 are illustrated in Figure 4. It is seen that the 
pressure drops increase with the increase of the kinetic Reynolds 
number at a fixed value of dimensionless oscillation amplitude of 
the fluid. Two main reasons may be attributed to the increase of 
the pressure drops under these conditions. First, the increase of 
the kinetic Reynolds number leads to more significant "annular 
effect" and thus the radial velocity gradients adjacent to the pipe 
wall become steeper; consequently, the friction force increases 
with the increase of the kinetic Reynolds number. Second, the 
inertia component in the momentum balance increases with the 
increase of the kinetic Reynolds number. 

Figure 5a shows typical variations of the instantaneous fric- 
tion coefficient cf during a complete cycle at A o = 16.5 for 
Re., = 64 and Re,, = 208.2, and Figure 5b shows those at Re,~ = 
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Figure 4 Typical variat ions of the ensemble-averaged pres- 
sure drops for Re~ = 144.1 and 324,3 at A o = 10 
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Figure 5 (a) Comparison of the instantaneous friction coeffi- 
cient of the ful ly developed f low between analytical and experi- 
mental results for Re= = 64 and 208.2 at A o = 10; (b) Compari- 
son of the instantaneous friction coefficient of the ful ly devel- 
oped f low between analytical and experimental results for 
A o = 16.5 and 26.42 at Re= = 256.1 

256.1 for A o = 16.5 and A o = 26.42. The circle symbols repre- 
sent the measured data cf, exp, and the solid lines represent the 
analytical solutions c f = ,  given by Equation 13, at the correspond- 
ing conditions. Generally, the temporal friction coefficient varies 
sinusoidally, and its amplitude decreases with either the increase 
of the kinetic Reynolds number at a fixed value of the dimension- 
less oscillation amplitude of the fluid (shown in Figure 5a) or the 
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F i g u r e  6 Comparison of the cycle-averaged friction coefficient 
between analytical solution and experimental data 
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increase of the dimensionless oscillation amplitude of the fluid at 
a fixed value of the kinetic Reynolds number (shown in Figure 
5b). Comparing the analytical solution with the measured data, 
we can see that the analytical solution is in a fairly good 
agreement with the experimental data. 

A comparison of the cycle-averaged friction coefficient of the 
measured data ~f, exp and the analytical solution ~[,~ given by 
Equation 19 for A o = 16.5, 22.51, and 26.42 is presented in 
Figure 6. The symbols represent the measured data, and the solid 
line represents the analytical solution. It is shown that the analyti- 
cal solution is in good agreement with the experiment, with the 
maximum deviation from the analytical solution being +_ 14.8%. 
The scatter of data may be attributed to the fact that fluctuations 
occurred in the measurements of pressure drops and cross-sec- 
tional mean velocities, as shown in Figures 3 and 4. 

Concluding remarks 

In this paper, it is shown that a sinusoidally reciprocating flow in 
a long pipe is governed by two similarity parameters: the dimen- 
sionless oscillation amplitude of fluid, and the kinetic Reynolds 
number. Analytical expressions for the instantaneous and cycle- 
averaged friction coefficients of a fully developed laminar recip- 
rocating pipe flow have been obtained in terms of these two 
parameters. These simple expressions for the friction coefficients 
of a laminar reciprocating flow are shown to be in good agree- 
ment with measurements. 
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